

BalanceTutor™

Signal Analysis & Validation Report

Sep 2021

BalanceTutor a dynamic and static postural control trainer

Written by: Ziv Kuniz, MediTouch CTO

Version History

Date	Change description	Written by	Ver.
06 Feb 2018	Initial version.	Ziv K.	180206
28 Feb 2018	Adding section: COP classification algorithm validation	Ziv K.	180226
02 Oct 2018	Adding section: Treadmill Perturbation Kinematics	Ziv K.	181002
26 Dec 2018	Adding: Belt speed validation, Emergency Stop Switch validation, Perturbation Platform Execution Time	Ziv K.	181226
	Validation, Running Belt Start and Stop Time Validation		
14 Jul 2020	Adding: Gait Analysis validation	Ziv K.	200714
16 Nov 2020	Corrections in dynamic perturbation profiles	Ziv K.	201116
01 Sep 2021	Extending Data Acquisition chapter	Ziv K.	210901

E&EO

Tel: (972)-9-8637477 Fax: (972)-9-8852935 45 Hamelacha, Poleg industrial zone, Netanya, Israel. Zip: 4250574, PO Box: 8306

Page 1 of 36

www.meditouch.co.il info@meditouch.co.il DO-15-01-17

BalanceTutor signal analysis & validation report 210901.doc

Table of Contents

1 Introduction
2 Data acquisition
2.1 Enabling data logging
2.2 File access
2.3 CSV file structure
2.4 Extraction files
3 Insights
3.1 COP signal characteristics in a normal walking
3.2 Perturbation Profile Explanation
3.3 Static
3.3.1 Forward & Backward Static Perturbation Intensities
3.3.2 Lateral Static Perturbation Intensities
3.4 Dynamic
3.4.1 Forward Perturbation Profile
3.4.2 Backward Perturbation Profile
3.4.3 Medial/Lateral Perturbation Profile
4 Validation
4.1 COP Classification Algorithm
4.2 Treadmill Perturbation Kinematics
4.2.1 Treadmill Speed
4.2.2 Treadmill Perturbation Acceleration & Deacceleration
4.2.3 Forward Distance
4.2.4 Backward Distance
4.3 Lateral Perturbation Kinematics
4.3.1 Speed
4.3.2 Acceleration
4.3.3 Deacceleration
4.3.4 Distance
4.4 Emergency Stop Switch
4.5 Safety Stop Switch Limits
4.6 Perturbation Platform Execution Time Validation

4.7 Belt Speed Validation	
4.8 Running Belt Start and Stop Time V	alidation
4.9 Gait Analysis	
4.9.1 Introduction	
4.10 Reproducibility Test	

1 Introduction

Following document brings few insights about signals generated from the BalanceTutor. This information might use for further signal processing and research purposes.

2 Data acquisition

The BalanceTutor software has a data acquisition system that document the kinematic events of the motors and the COP readings of the perturbation platform. The logged data organized in a row and column structure, while each row is a single sample and each column is a sensor or parameter. The logged data is saved in a csv file format at the end of each treatment or evaluation. The amount of information the system writes to the csv file approximated with 60 samples/second.

Engaging with the system data acquisition requires an installed Matlab environment and basic programing skills to be able to access the raw data and perform mathematical investigations.

2.1 Enabling data logging

In order to generate the raw data that the system generates, you need to enable the Sensors Logger checkbox in Settings. Access the application \rightarrow Settings \rightarrow Parameters \rightarrow Enable Sensor Logger.

					Ba	lanceTutor™
A	Parameters Settings Save path			*		
Users	Max treatment time [1-59]	59	Min.			
	Default treatment time	10	Min.			
Parameters >	Minimum Save Time [0.5-5]	0.5	Min.			
	Use IMU Trigger Technology					
Technical	Sensors Logger	~				
	Language	en-US 🔻	1			
	Measurement	Metric 🔻	1			
and the second second	Organization Name	MediTouch Ltd.				
Back		Hamalacha 45 Dalag		•	Edit	
Therapist: admin Patient: test test					161	V.20.1.0715 2021-09-01 10:08

After this checkbox is enabled, evry end of a treatment a csv file is generated automatically in a local folder of the inner computer.

Note: As a default, the system is configured with this feature as unchecked.

2.2 File access

At the end of each treatment a csv file is generated and placed in the following location: c:\Balancetutor\SensorsLogs\

Note: Do not change any permission/s, add/remove user/s, credentials, group policy rules, user access based domain management (Active Directory), folder locations etc. Such actions prohibited and could cause safety issues that may harm the users and/or the system.

The BalanceTutor is a closed system and accessing the saved files is more challenging. Following are a few options to access the folder and withdraw chosen files:

 Log Off from BTuser > Enter to BTadmin with the following password: a123456 > navigate to the following folder: c\Balancetutor\SensorsLogs\

To return the UI (user interface) back to normal, make a simple system restart.

2. From remote computer > build a network folder as follow:

			\times
~	🍕 Map Net	twork Drive	
	What net	work folder would you like to map?	
	Specify the	drive letter for the connection and the folder that you want to connect to:	
	Drive:	0: ~	
	Folder:	\\192.168.168.66\c\Balancetutor\SensorsLogs\ v Browse	
		Example: \\server\share	
		Reconnect at sign-in	
		Connect using different credentials	
		Connect to a Web site that you can use to store your documents and pictures.	
		Finish Can	cel

Note: Open cmd (in command line) and use ipconfig command to check what is the local ip of the BalanceTutor computer in your network.

2.3 CSV file structure

COLUMN	NAME	DESCRIPTION	UNITS
А	ID	Running number	[Count]
В	TIME	System time	[dd-mm-yyyy HH:MM:SS.sss]
С	COP_X	COP X Coordinate	[cm]
D	COP_Y	COP Y Coordinate	[cm]
Е	SPEED_TM	Treadmill speed	[cm/s]
F	ImuLeftPacketCount	IMU Left Packet counter	[Count]
G	IMU_LEFT_ACC_X	IMU Left Accelerometer X Axis	[g]
Н	IMU_LEFT_Gyro_X	IMU Left Gyroscope X Axis	[deg/s]
Ι	IMU_LEFT_ACC_Y	IMU Left Accelerometer Y Axis	[g]
J	IMU_LEFT_Gyro_Y	IMU Left Gyroscope Y Axis	[deg/s]
К	IMU_LEFT_ACC_Z	IMU Left Accelerometer Z Axis	[g]
L	IMU_LEFT_Gyro_Z	IMU Left Gyroscope Z Axis	[deg/s]
М	ImuRightPacketCount	IMU Right Packet counter	[Count]
N	IMU_RIGHT_ACC_X	IMU Right Accelerometer X Axis	[g]
0	IMU_RIGHT_Gyro_X	IMU Right Gyroscope X Axis	[deg/s]
Р	IMU_RIGHT_ACC_Y	IMU Right Accelerometer Y Axis	[g]
Q	IMU_RIGHT_Gyro_Y	IMU Right Gyroscope Y Axis	[deg/s]
R	IMU_RIGHT_ACC_Z	IMU Right Accelerometer Z Axis	[g]
S	IMU_RIGHT_Gyro_Z	IMU Right Gyroscope Z Axis	[deg/s]
Т	ImuAPacketCount	IMU A Packet counter	[Count]
U	IMU_A_ACC_X	IMU A Accelerometer X Axis	[g]
V	IMU_A_Gyro_X	IMU A Gyroscope X Axis	[deg/s]
W	IMU_A_ACC_Y	IMU A Accelerometer Y Axis	[g]
Х	IMU_A_Gyro_Y	IMU A Gyroscope Y Axis	[deg/s]
Y	IMU_A_ACC_Z	IMU A Accelerometer Z Axis	[g]
Ζ	IMU_A_Gyro_Z	IMU A Gyroscope Z Axis	[deg/s]
AA	ImuBPacketCount	IMU B Packet counter	[Count]
AB	IMU_B_ACC_X	IMU B Accelerometer X Axis	[g]
AC	IMU_B_Gyro_X	IMU B Gyroscope X Axis	[deg/s]
AD	IMU_B_ACC_Y	IMU B Accelerometer Y Axis	[g]
AE	IMU_B_Gyro_Y	IMU B Gyroscope Y Axis	[deg/s]
AF	IMU_B_ACC_Z	IMU B Accelerometer Z Axis	[g]
AG	IMU_B_Gyro_Z	IMU B Gyroscope Z Axis	[deg/s]
AH	ImuCPacketCount	IMU C Packet counter	[Count]
AI	IMU_C_ACC_X	IMU C Accelerometer X Axis	[g]

45 Hamelacha, Poleg industrial zone, Netanya, Israel.

www.meditouch.co.il info@meditouch.co.il D0-15-01-17

Tel: (972)-9-8637477

Fax: (972)-9-8852935

Zip: 4250574, PO Box: 8306 Page 6 of 36

MediTouch

AJ	IMU_C_Gyro_X	IMU C Gyroscope X Axis	[deg/s]
AK	IMU_C_ACC_Y	IMU C Accelerometer Y Axis	[g]
AL	IMU_C_Gyro_Y	IMU C Gyroscope Y Axis	[deg/s]
AM	IMU_C_ACC_Z	IMU C Accelerometer Z Axis	[g]
AN	IMU_C_Gyro_Z	IMU C Gyroscope Z Axis	[deg/s]
AO	PERT_TYPE	Perturbation type. One of 5 states:	[String]
		- LeftPert	
		- RightPert	
		- FwdPert	
		- RevPert	
		- Pert End	
AP	PERT_ACC	Perturbation Acceleration	[cm/s^2]
AQ	PERT_DEC	Perturbation Deceleration	[cm/s^2]
AR	PERT_DIST	Perturbation Distance	[cm]
AS	PERT_INTERVAL	INTERNAL USE	
AT	PERT_RTN_ACC	Return from perturbation Acceleration	
AU	PERT_RTN_DEC	Return from perturbation Deceleration	
AV	INTENSITY	Perturbation intensity (1-30)	[]
AW	INCREASE_IN_SPEED	Increase in speed from V0 to V1	[m/s]

2.4 Extraction files

In order to view the information logged to the CSV file, we have developed a Matlab files package. Ask MediTouch for the latest BalanceTutor CSV Extraction File Package.

Following few examples of recorded treatments from the BalanceTutor:

Case 1: Constant walking speed with four perturbation events and four different intensities.

Case 2: COP behavior over time and butterfly constellation over a constant walking speed.

Tel: (972)-9-8637477 45 Hamelacha, Poleg industrial zone, Netanya, Israel. Zip: 4250574, PO Box: 8306 Fax: (972)-9-8852935 Page 8 of 36

www.meditouch.co.il info@meditouch.co.il DO-15-01-17

BalanceTutor signal analysis & validation report 210901.doc

3 Insights

3.1 COP signal characteristics in a normal walking

Following a record of a 75sec normal walking with 5 lateral perturbations, 3 to the left 2 to the right. Intensity was set to level 8 out of 30 with a walking speed of 2km/h.

✤ Resources

Record tracking folder:	REC01
BalanceTutor model:	BT100
BalanceTutor software version:	1.0.11.1107
Subject:	Normal health, age 42, weight 78kg, height 168cm

Event log

EVENT NO.	PERTURBATION EVENT	TIME ID	Time	COP_X	COP_Y	SPEED_TM*	PERT_TYPE	PERT_ACC	PERT_DEC	PERT_DIST	PERT_INTERVAL	PERT_RTN_ACC	PERT_RTN_DEC
1	Start	2519	06-02-2018 12:04:30.244	1.095	36.527	56	LeftPert	50	52	52	5	203	5
1	Stop	2817	06-02-2018 12:04:33.209	15.138	21.984	56	Pert End						
2	Start	3700	06-02-2018 12:04:42.045	0.043	34.769	56	LeftPert	50	52	52	5	203	5
2	Stop	4000	06-02-2018 12:04:45.031	-9.976	36.452	56	Pert End						
2	Start	4818	06-02-2018 12:04:53.228	0.028	41.961	56	RightPert	50	52	52	5	203	5
J	Stop	5112	06-02-2018 12:04:56.160	-4.325	37.938	56	Pert End						
4	Start	5946	06-02-2018 12:05:04.492	-1.574	45.641	56	LeftPert	50	52	52	5	203	5
4	Stop	6246	06-02-2018 12:05:07.480	17.377	25.866	56	Pert End						
-	Start	7134	06-02-2018 12:05:16.357	0.481	36.408	56	RightPert	50	52	52	5	203	5
<u> </u>	Stop	7437	06-02-2018 12:05:19.378	-9.933	44.724	56	Pert End						

Time based observation

✤ Findings

- 1. For normal walking with no perturbation events a rather stationary square train signal observed. This signal charectarized with:
 - A. Low rate bias variation.
 - B. Similare differences between minima and maxima of picks.
 - C. Fairly constant dute cycles.
 - D. Most of spectral energy will concentrate to low frequencies.
- 2. During a lateral perturbation event, an abnormal signal behavior observed that charectarized with:
 - A. Large rippel at picks of the square train signal.
 - B. Different time intervals from perturbation initiation to normal stable walking pattern.
- 3. Different signal behavior detected in approximately 40-60msec after perturbation even occured.
- 4. No clear classification for perturbation pattern type to actual right or left platform direction.

3.2 Perturbation Profile Explanation

Following section will describe in which approach the engine system (treadmill and lateral) varies.

3.3 Static

3.3.1 Forward & Backward Static Perturbation Intensities

Intensity	Pert Distan	ce (x)	a = 2(x/2)/dt/	^2	v = a*dt
1	1		13		4
2	2		26		7
3	3		38		11
4	4		51		14
5	5		64		18
6	6		77		21
7	7		89		25
8	8		102		29
9	9		115		32
10	10		128		36
11	11		140		39
12	12		153		43
13	13		166		46
14	14		179		50
15	15		191		54
16	16		204		57
17	17		217		61
18	18		230		64
19	19		242		68
20	20		255		71
21	21		268		75
22	22		281		79
23	23		293		82
24	24		306		86
25	25		319		89
26	26		332		93
27	27		344		96
28	28		357		100
29	29		370		104
30	30		383		107
	dt		0.28]	
	dx		1	1	
			-	1	

45 Hamelacha, Poleg industrial zone, Netanya, Israel. Zip: 4250574, PO Box: 8306 Page 11 of 36

3.3.2 Lateral Static Perturbation Intensities

Intensity	Pert Distance	ce (x)	a = 2(x/2)/dt^	2 v = a*dt
1	1.0		13	4
2	1.6		20	6
3	2.2		28	8
4	2.8		35	10
5	3.3		43	12
6	3.9		50	14
7	4.5		58	16
8	5.1		65	18
9	5.7		73	20
10	6.3		80	22
11	6.9		88	25
12	7.4		95	27
13	8.0		102	29
14	8.6		110	31
15	9.2		117	33
16	9.8		125	35
17	10.4		132	37
18	11.0		140	39
19	11.5		147	41
20	12.1		155	43
21	12.7		162	45
22	13.3		170	48
23	13.9		177	50
24	14.5		185	52
25	15.1		192	54
26	15.7		200	56
27	16.2		207	58
28	16.8		215	60
29	17.4		222	62
30	18.0		230	64
	dt		0.28	
	dx		0.586	

3.4 Dynamic

3.4.1 Forward Perturbation Profile

3.4.1.1 Standing State

	Walkin	g Speed		Forward Perturbation Model								
	Initial Speed (VO)				Target Sr	pood()(1)		Acceleration	Acceleration /			
Initial Speed (VO)				Target Speed (V1)				Time	Deacce	leration		
[kn	n/h]	[cn	n/s]	[cn	n/s]	[cr	n/s]	[s]	[cm	/s²]		
V0_min	V0_max	V0_min	V0_max	V1 Range	at V0_min	V1 Range	at V0_max	ΔΤ	a_min	a_max		
0	0	0	0	3	112	3	112	0.3	10	373		

3.4.1.2 Walking State

45 Hamelacha, Poleg industrial zone, Netanya, Israel. Zip: 4250574, PO Box: 8306 ^{0901.doc} Page 13 of 36

	Walking Speed				Forward Perturbat				n Model			
		Initial Sp	eed (VO)			Target Sr	peed (V1)		Acceleration	Accele	ration /	
						01			Time	Deacce	leration	
	[km	ո / h]	[cn	n/s]	[cn	n/s]	[cn	n/s]	[s]	[cm/s ²]		
	V0_min	V0_max	V0_min	V0_max	V1 Range	at V0_min	V1 Range	at V0_max	ΔΤ	a_min	a_max	
	0.1	1	3	28	6	86	31	111	0.2	15	415	
	1.1	2	31	56	46	131	71	156	0.2	75	500	
	2.1	3	58	83	88	183	113	208	0.2	150	625	
	3.1	4	86	111	131	211	156	236	0.2	225	625	
	4.1	5	114	139	174	239	199	264	0.2	300	625	
	5.1	6	142	167	202	239	227	264	0.2	300	485	
	6.1	7	169	194	209	239	234	264	0.2	200	350	
		2.1 4 5	6 7	km/h	« 《	L		1 2 3	3 4 5 6 7	\bigcirc	km/h	« ۲ ۲
• •	- I	1 16 21	26 30			l		6 11	1 16 21 26 30			
Target s	peed varies	from 88 to	183 [cm/s]	at V0_min	of 2.1[km/h]]	Tar	get speed vari	es from 113 to 20	8 [cm/s] a	t V0_max o	of 3[km/h]
·	6 11	3 0 16 21	26 30	\sim		L		6 11	30 16 21 26 3			0

3.4.2 Backward Perturbation Profile

3.4.2.1 Standing State

	Walkin	g Speed	-	Backward Perturbation Model								
	Initial Sr			Target S	nood (V1)	Accolora	tion Time	Acceler	ation /			
Initial Speed (V0)				Talget 5	peed (VI)	Accelera	lion nine	Deacceleration				
[kn	n/h]	[cn	n/s]	[cm/s]	[cm/s]	[s]	[cm	/s²]			
V0_min	V0_max	V0_min	V0_max	V1 Range at V0_min	V1 Range at V0_max	∆T_min	∆T_max	a_min	a_max			
0	0	0	0	3	83	0.2	0.2	15	373			

3.4.2.2 Walking State

	Walking Speed						Back	ward Pertur	vard Perturbation Model			
		Initial Sp	eed (VO)			Target Sp	peed (V1)		Accelera	tion Time	Acceler Deacce	ation / eration
	[km	ז / h]	[cn	1/s]	[cn	n/s]	[cn	n/s]	[s]		[cm/s ²]	
V	/0_min	V0_max	V0_min	V0_max	V1 Range	at V0_min	V1 Range	at V0_max	∆T_min	∆T_max	a_min	a_max
	0.1	1	3	28	2	0	27	0	0.2	0.15	5	185
	1.1	2	31	56	28	0	53	0	0.2	0.25	15	222
	2.1	3	58	83	53	0	78	0	0.2	0.3	29	278
	3.1	4	86	111	78	0	103	0	0.2	0.35	43	317
	4.1	5	114	139	103	0	128	0	0.2	0.4	57	347
	5.1	6	142	167	128	0	153	0	0.2	0.45	71	370
	6.1	7	169	194	153	0	178	0	0.2	0.5	85	389
·		2.1 2 3 4	5 6		km/h	« <l< th=""><th>C</th><th></th><th>2 3 4</th><th>5 6 7</th><th>km/h</th><th>8</th></l<>	C		2 3 4	5 6 7	km/h	8
)	1	21 26				C	O	1 11 16 21	26 30		
Tar	get spee	d varies fro	m 53 to 0 [d	cm/s] at VO	_min of 2.1[kr	m/h]		Target sp	eed varies from	m 78 to 0 [cm/	's] at V0_m	ax of 3[km/h]
		30	21 26			Ü		1	30	26 30	<u>^</u>	

3.4.3 Medial/Lateral Perturbation Profile

This explanation includes both standing and walking states

4 Validation

4.1 COP Classification Algorithm

Resources

Record tracking folder:	REC03
BalanceTutor model:	BT100
BalanceTutor software version:	1.0.11.1107
Subject:	Normal health, age 31, weight 74kg, height 185cm

Protocol

- A. Access to the BT software
- B. Go to Settings then to PArameters
- C. Enable Sensor Logger
- D. Set to Manual Mode
- E. Set Speed to 4.2km/h
- F. Ask the subject to walk normaly
- G. Press PLAY
- H. Record approximattly 1min
- I. After record complited, perform signal analysis using Matlab software

 Photo taken to include two feets during normal walking together with ruler taped on the front cover of the BT.

Mtlab analysis for one representive fragment of the signal.

4.2 Treadmill Perturbation Kinematics

Following measurements recorded using EP204 and EP206 drivers installed in the BalanceTutor. Reference file: PerturbationSetup_v1.2_160821.xlsx

4.2.1 Treadmill Speed

Following a table shows records detected from the EP206 driver that controls the running belt speed. The smallest speed (non zero) value is **3cm/s** and largest speed value is **194cm/s**.

	Running Speed										
	Walking	Velocity	Walking Velocity								
Index	UI Parameter	UI Parameter	StartSpeed (DB)	EndSpeed (DB)							
	[kn	n/h]	[cm	n/s]							
#	V0_min	V0_max	V0_min	V0_max							
0	0	0	0	0							
1	0.1	1	3	28							
2	1.1	2	31	56							
3	2.1	3	58	83							
4	3.1	4	86	111							
5	4.1	5	114	139							
6	5.1	6	142	167							
7	6.1	7	169	194							

4.2.2 Treadmill Perturbation Acceleration & Deacceleration

Following a table shows records detected from the EP206 driver that controls the running belt perturbation acceleration and deacceleration. The smallest acceleration value is **10cm/s²** and largest acceleration value is **625cm/s²**.

	Runnin	g Speed		Forward Perturbation Model							
Malking	Valasity	Malking	Valasity	Increase	e in speed	Perturbatio	on Velocity	Perturbati	on Velocity	Acceler	ation =
waiking	velocity	waiking	velocity	fro	om V0	for m	nin V1	for m	nax V1	DeAcce	leration
										Accele	ration
UI	UI	StartSpeed	EndSpeed			Calculated	Calculated	Calculated	Calculated	ar	nd
Parameter	Parameter	(DB)	(DB)	Spe	Speed (DB)		Parameter	Parameter	Parameter	Deaccel	eration
										(DB)	
[kn	n/h]	[cm	n/s]	[0	:m/s]	[cn	n/s]	[cm/s]		[cm/s2]	
V0_min	V0_max	V0_min	V0_max	D_V1_mi	n D_V1_max	V1_min	V1_max	V1_min	V1_max	a_min	a_max
0	0	0	0	3	112	3	112	3	112	10	373
0.1	1	3	28	3	83	6	86	31	111	15	415
1.1	2	31	56	15	100	46	131	71	156	75	500
2.1	3	58	83	30	125	88	183	113	208	150	625
3.1	4	86	111	45	125	131	211	156	236	225	625
4.1	5	114	139	60	125	174	239	199	264	300	625
5.1	6	142	167	60	97	202	239	227	264	300	485
6.1	7	169	194	40	70	209	239	234	264	200	350

 Tel: (972)-9-8637477
 45 Hi

 Fax: (972)-9-8852935

45 Hamelacha, Poleg industrial zone, Netanya, Israel. Zip: 4250574, PO Box: 8306 ^{0901.doc} Page 19 of 36

4.2.3 Forward Distance

Following a table shows records detected from the EP206 driver that measures the actual distance under different forward perturbation events. The smallest distance value is 3cm and largest distance value is 87cm.

		Runnin	g Speed					F	orward Pertu	rbation Mod	el				
	Walking	Valocity	Walking	Valocity	1	Increase in speed	Perturbatio	on Velocity	Perturbatio	on Velocity	Acceler	ation =	Т	otal	Acceleration
	warking	waiking velocity waiking velocity			from V0	for m	nin V1	for m	lax V1	DeAcce	leration	Trap	ezoid	Time	
Index											Accele	ration			
muex	UI	UI	StartSpeed	EndSpeed		Speed (DB)	Calculated	Calculated	Calculated	Calculated	an	id	Dista		
	Parameter	Parameter	(DB)	(DB)		Speed (DB)	Parameter	Parameter	Parameter	Parameter	Deaccel	eration	Dista	ice (DB)	
											(D	В)			
	[kn	n/h]	[cm	n/s]		[cm/s]	[cn	n/s]	[cn	n/s]	[cm	/s2]	[cm]	[s]
#	V0_min	V0_max	V0_min	V0_max	D_	V1_min D_V1_max	V1_min	V1_max	V1_min	V1_max	a_min	a_max	d_mir	n d_max	DT
0	0	0	0	0		3 112	3	112	3	112	10	373	3	35	0.3
1	0.1	1	3	28		3 83	6	86	31	111	15	415	3	16	0.2
2	1.1	2	31	56		15 100	46	131	71	156	75	500	13	27	0.2
3	2.1	3	58	83		30 125	88	183	113	208	150	625	23	39	0.2
4	3.1	4	86	111		45 125	131	211	156	236	225	625	33	51	0.2
5	4.1	5	114	139		60 125	174	239	199	264	300	625	43	63	0.2
6	5.1	6	142	167		60 97	202	239	227	264	300	485	53	75	0.2
7	6.1	7	169	194		40 70	209	239	234	264	200	350	63	87	0.2

4.2.4 Backward Distance

Following a table shows records detected from the EP206 driver that measures the actual distance under different backward perturbation events. The smallest distance value is 1cm and largest distance value is **146cm**.

		Runnin	g Speed							Backwa	rd Perturba	tion Model		
	Walking	Valacity	Walking	Valocity	Decreese	e in speed from	Perturbatio	n Velocity for	Perturbatio	on Velocity	Acce	leration =	Total Tr	apezoid
	VVdiking	velocity	waiking	velocity	V0		min V1		for max V1		DeAcceleration		Distance	
Index	UI Parameter	UI Parameter	StartSpeed (DB)	EndSpeed (DB)	Sp	peed (DB)	Calculated Parameter	Calculated Parameter	Calculated Parameter	Calculated Parameter	Acce Deacce	eleration + eleration (DB)	Distan	ce (DB)
1	[kn	n/h]	[cm	n/s]		[cm/s]	[c	m/s]	[cn	n/s]	[cm/s2]	[c	m]
#	V0_min	V0_max	V0_min	V0_max	D_V1_mi	n D_V1_max	V1_min	V1_max	V1_min	V1_max	a_min	a_max	d_min	d_max
0	0	0	0	0	3	83		3	8	3	15	373	3	35
1	0.1	1	3	28	1	Current Speed	2	0	27	0	5	185	1	6
2	1.1	2	31	56	3	Current Speed	28	0	53	0	15	222	6	21
3	2.1	3	58	83	6	Current Speed	53	0	78	0	29	278	12	38
4	3.1	4	86	111	9	Current Speed	78	0	103	0	43	317	18	58
5	4.1	5	114	139	11	Current Speed	103	0	128	0	57	347	24	83
6	5.1	6	142	167	14	Current Speed	128	0	153	0	71	370	30	113
7	6.1	7	169	194	17	Current Speed	153	0	178	0	85	389	36	146

4.3 Lateral Perturbation Kinematics

4.3.1 Speed

Following a table shows records detected from the EP204 driver that controls the lateral movement speed of the perturbation platform. The smallest speed value is **5cm/s** and largest speed value is **60cm/s**.

Index		Walking	Velocity		Та	rget	Vel	ocity (V1)	
	[km	n/h]	[cm/s]			[cm/s]			
#	V0_min	V0_max	V0_min	V0_max	۷	1_m	in	V1_max	
0	0	0	0 0			5		60	
1	0.1	1	3	28		5		30	
2	1.1	2	31	56		5		40	
3	2.1	3	58	83		5		50	
4	3.1	7	86	194		5		60	

4.3.2 Acceleration

Following a table shows records detected from the EP204 driver that controls the perturbation platform acceleration. The smallest acceleration value is **25cm/s²** and largest acceleration value is **200cm/s²**.

Index		Walking	Velocity		Target Ve	locity (V1)	Acceleration to target V1				
	[km	n/h]	[cm	n/s]	[cn	[/s2]				
#	V0_min	V0_max	V0_min	V0_max	V1_min	V1_max	Acc_mir	n	Acc_max		
0	0	0	0	0	5	60	25		200		
1	0.1	1	3	28	5	30	25		75		
2	1.1	2	31	56	5	40	25		114		
3	2.1	3	58	83	5	50	25		156		
4	3.1	7	86	194	5	60	25		200		

4.3.3 Deacceleration

Following a table shows records detected from the EP204 driver that controls the perturbation platform deacceleration. The smallest deacceleration value is 25 cm/s^2 and largest deacceleration value is 200 cm/s^2 .

Index		Walking	Velocity		Target Ve	locity (V1)	DeAcc dista	elera	atio (sp	on to end beed=0)
	[km	n/h]	[cn	n/s]	[cn		2]			
#	V0_min	V0_max	V0_min	V0_max	V1_min	V1_max				
0	0	0	0	0	5	60	25			200
1	0.1	1	3	28	5	30	25			75
2	1.1	2	31	56	5	40	25			114
3	2.1	3	58	83	5	50	25			156
4	3.1	7	86	194	5	60	25			200

4.3.4 Distance

Following a table shows records detected from the EP204 driver that measures the actual distance under different lateral perturbation events. The smallest distance value is **1cm** and largest distance value is **18cm**.

Index	Walking Velocity			Target Velocity (V1)		Lateral Perturbation Distance				
	[km/h] [cm/s]			[cn	1/s]		[cm	ו]	
#	V0_min	V0_max	V0_min	V0_max	V1_min	V1_max		D_min		D_max
0	0	0	0	0	5	60	ſ	1		18
1	0.1	1	3	28	5	30		1		12
2	1.1	2	31	56	5	40		1		14
3	2.1	3	58	83	5	50		1		16
4	3.1	7	<mark>8</mark> 6	194	5	60	l	1		18

4.4 Emergency Stop Switch

- Purpose: The following test conducted in order to examine the reliability and execution time of the Emergency Stop Switch.
- Test Procedure
 - 1. Since the load capacity of the BT is 135 kg at the maximum, the subject wears additional cloths so the total weight becomes 140 kg as the worst case. Therefore, we use a subject that simulates a 140Kg load on the BT. Test conducted with two units to confirm that it is not characteristic of the device. The test conducted three times for each device in order to confirm the accidental result at the time of the measurement.
 - 2. Sequence:
 - A. Set the BT software to a manual mode
 - B. Set speed to 7 km/h
 - C. Set treatment duration to 5min
 - D. Press PLAY
 - E. Prepare and reset the Stop Watch
 - F. Press Emergency Stop Switch and on the same time initiate the Stop Watch counter
 - G. When running belt completely stopped, stop the Stop Watch counting.
 - H. Write the execution time from the Stop Watch
 - I. Repeat 3 times for all four perturbation directions
 - 3. Repeat above sequence with another BT

✤ Results for the BT100 S/N: A183000007

Record #	Stop Time	Criteria
	[sec]	$0.5 \le t \text{ [sec]} \le 0.75$
1	0.58	Pass
2	0.61	Pass
3	0.60	Pass

✤ Results for the BT100 S/N: A183000032

Record #	Stop Time	Criteria
	[sec]	$0.5 \le t \text{ [sec]} \le 0.75$
1	0.62	Pass
2	0.59	Pass
3	0.61	Pass

✤ Conclusion:

This test showed that the system acts as expected in the criteria safety range that where defined in design and no farther precaution actions needed.

4.5 Safety Stop Switch Limits

Purpose: The following test conducted in order to examine the reliability of the internal Safety Stop Switch. Its purpose to prevent the perturbation platform (moves right and left) to travel above its physical travel distance of ±24cm. If the perturbation platform exceeds the safety limit of ±21.75cm there is a risk of high impact of the moving perturbation platform with the base frame, which is stationary all time.

✤ Test procedure:

- A. Turn ON the system
- B. Complete its designed Homing procedure
- C. Go to Settings > Device > press one time on +21.75 and one time on -21.75
- D. Check if for one of the cases the Safety Stop Switch was enabled
- E. Do the following 1-4 steps 30 times and check stability of action, otherwise report as fault.
- Conclusion: after 30 times of the above procedure, the system acts safely as expected and no farther precaution actions where needed.

4.6 Perturbation Platform Execution Time Validation

- Purpose: Validate the maximal perturbation execution time for all four directions.
- Equipment: Brand ACCUSPLIT, Model 601X, S/N 44587215
- Test Procedure:
 - 1. Use a Stop Watch measurement equipment:

- 2. Since the load capacity of the BT is 135 kg at the maximum, the subject wears additional cloths so the total weight becomes 140 kg as the worst case. Therefore, we use a subject that simulates a 140Kg load on the BT. Test conducted with two units to confirm that it is not characteristic of the device. The test conducted three times for each device in order to confirm the accidental result at the time of the measurement.
- 3. Sequence:
 - A. Set the BT software to a manual mode
 - B. Set speed to 0 km/h
 - C. Set Perturbation to maximal (30)
 - D. Set treatment duration to 5min
 - E. Press PLAY
 - F. Prepare and reset the Stop Watch
 - G. Initiate perturbation and on the same time start the Stop Watch
 - H. When perturbation finished stop the Stop Watch counting
 - I. Write the execution time from the Stop Watch
 - J. Repeat 3 times for all four perturbation directions
- 4. Repeat above sequence with another BT

Record #	Forward	Backward	Right	Left	Criteria	
	[sec]	[sec]	[sec]	[sec]	FW, BW	: $0.5 \le t [sec] \le 1.0$
					R, L:	$0.5 \le t \text{ [sec]} \le 1.0$
1	0.68	0.70	0.87	0.86	Pass	
2	0.71	0.71	0.85	0.87	Pass	
3	0.69	0.69	0.88	0.85	Pass	

✤ Results for the BT100 S/N: A183000007

✤ Results for the BT100 S/N: A183000032

Record #	Forward	Backward	Right	Left	Criteria
	[sec]	[sec]	[sec]	[sec]	FW, BW: $0.5 \le t \text{ [sec]} \le 1.0$
					R, L: $0.5 \le t [sec] \le 1.0$
1	0.65	0.67	0.88	0.85	Pass
2	0.71	0.7	0.84	0.89	Pass
3	0.69	0.68	0.86	0.84	Pass

Conclusion:

For both systems, approximately same values measured using the Stop Watch and the motor driver that reported to the computer (then to the user interface) as expected. The load of the subject on the running board did not influenced on target speed set by the user.

4.7 Belt Speed Validation

- Purpose: validate belt speed at \pm 7kmh with maximal load
- Equipment: Brand UNI-T, Model UT372, S/N C161065532
- Procedure:
 - 1. Set up the measurement equipment accordingly:

Consider the following parameter in the calculations: the length of the running belt is 3.32m

Speed [km/h] = Speed Meter Count [count] * Cyclic Belt Length [m/count] / Duration [h]

- 3. Since the load capacity of the BT is 135 kg at the maximum, the subject wears additional cloths so the total weight becomes 140 kg as the worst case. Therefore, we use a subject that simulates a 140Kg load on the BT. Test conducted with two units to confirm that it is not characteristic of the device. The test conducted three times for each device in order to confirm the accidental result at the time of the measurement.
- 4. Sequence:
 - A. Set the BT software to a manual mode
 - B. Set speed to 7 km/h
 - C. Set treatment duration to 5min
 - D. Press PLAY button
 - E. When record end's, write the time from the speed meter
 - F. Repeat 3 times for forward then backward belt direction
- 5. Repeat above sequence with another BT

✤ Results for the BT100 S/N: A183000007

Belt direction: Forward

	Speed Meter	External Measurer	Driver Measurement		
Record #	Speed Meter Measured Distance Measured Speed		Measured Speed	Calculated Distance	Target Speed
	[Count]	[m]	[km/h]	[m]	[km/h]
1	176	584	7.01	581	7
2	176	584	7.01	581	7
3	175	581	6.97	580	7

✤ Belt direction: Backward

	Speed Meter	External Measurer	Driver Measurement		
Record #	Speed Meter Measured Distance Measured Speed 0		Calculated Distance	Target Speed	
	[Count]	[m]	[km/h]	[m]	[km/h]
1	175	581	6.97	580	7
2	176	584	7.01	581	7
3	176	584	7.01	581	7

✤ Results for the BT100 S/N: A183000032

Belt direction: Forward

	Speed Meter External Measurement			Driver Measurement		
Record #	Speed Meter Measured Distance Measured Speed		Calculated Distance	Target Speed		
	[Count]	[m]	[km/h]	[m]	[km/h]	
1	176	584	7.01	582	7	
2	176	584	7.01	582	7	
3	177	587	7.05	585	7	

Belt direction: Backward

	Speed Meter External Measurement			Driver Measurement		
Record #	Speed Meter Measured Distance Measured Speed		Calculated Distance	Target Speed		
	[Count]	[m]	[km/h]	[m]	[km/h]	
1	176	584	7.01	581	7	
2	176	584	7.01	580	7	
3	176	584	7.01	581	7	

Tel: (972)-9-8637477 Fax: (972)-9-8852935 45 Hamelacha, Poleg industrial zone, Netanya, Israel. Zip: 4250574, PO Box: 8306 www.meditouch.co.il info@meditouch.co.il DO-15-01-17

BalanceTutor signal analysis & validation report 210901.doc

Conclusion:

For both systems, approximately same values measured using the speed meter and the motor driver that reported to the computer (then to the user interface) as expected. The load of the subject on the running board did not influenced on target speed set by the user.

4.8 Running Belt Start and Stop Time Validation

- Purpose: Validate the running belt Start time duration for speeds 0 km/h up to maximal of 7 km/h, and Stop time of the running belt from a speed of 7 km/h down to 0 km/h. examining performances with maximum load.
- Equipment: Brand ACCUSPLIT, Model 601X, S/N 44587215
- ✤ Test Procedure:
 - 1. Use a Stop Watch measurement equipment:

- 2. Since the load capacity of the BT is 135 kg at the maximum, the subject wears additional cloths so the total weight becomes 140 kg as the worst case. Therefore, we use a subject that simulates a 140Kg load on the BT. Test conducted with two units to confirm that it is not characteristic of the device. The test conducted three times for each device in order to confirm the accidental result at the time of the measurement.
- 3. Sequence:
 - A. Set the BT software to a manual mode
 - B. Set speed to 7 km/h
 - C. Set treatment duration to 1min
 - D. Prepare and reset the Stop Watch
 - E. Press PLAY and on the same time start the Stop Watch
 - F. When speed reaches to maxima speed of 7 km/h (sound of the motor start to be constant), stop the Stop Watch counting
 - G. Write the execution time from the Stop Watch
 - H. Reset the Stop Watch and prepare for a second counting
 - Continue walking for 20-30 seconds more I.

info@meditouch.co.il DO-15-01-17

- J. Press STOP and on the same time start the Stop Watch
- K. When speed reaches to full stop of the belt, stop the Stop Watch counting.
- L. Write the execution time from the Stop Watch
- M. Repeat 3 times for all four perturbation directions
- 4. Repeat above sequence with another BT
- Results for the BT100 S/N: A183000007

Record #	START TIME	STOP TIME	Criteria	Criteria
	[sec]	[sec]	START: $7 \le t$ [sec] ≤ 10	STOP: $7 \le t$ [sec] ≤ 10
1	8.15	7.94	Pass	Pass
2	8.08	8.03	Pass	Pass
3	8.22	8.11	Pass	Pass

✤ Results for the BT100 S/N: A183000032

Record #	START TIME	STOP TIME	Criteria	Criteria
	[sec]	[sec]	START: $7 \le t$ [sec] ≤ 10	STOP: $7 \le t$ [sec] ≤ 10
1	8.11	8.04	Pass	Pass
2	8.18	8.10	Pass	Pass
3	8.07	7.89	Pass	Pass

✤ Conclusion:

For both systems, values within the range of the required specification values measured.

4.9 Gait Analysis

The following section will focus on validating gait analysis parameters generated from the Gait Analysis Evaluation mode.

Note: This module is license dependent and not included in the basic BalanceTutor software pack. Ask your vendor for quotation on the Gait Analysis Add-on Module.

4.9.1 Introduction

The BalanceTutor has a real-time data acquisition from four analogue load cells that can hold up to 200Kg of weight for each sensor. The analogue output of the load cells are then digitized (A/D converter) in a rate of 100[sample/sec]. Using a moment calculation of the weights applied on each sensor a COP(x(t),y(t)) calculated. In practice because its sampled time COP function represented as COP(x(nTs),y(nTs)) while n is time index and Ts is the sampling time interval. Because the moment equations makes the total weight applied to the platform equal at any Euclidian point, the weight then is not the parameter for analysis but only the location of the gait event and its timing.

4.10 Reproducibility Test

The gait analysis functionality tested in healthy volunteers. The volunteers walked on the treadmill at speeds 1, 2, 3, 4, 5 and 6 km/h. The volunteers repeated the test 3 times at each speed.

It was found that the values generated over the 3 tests at each speed 1, 2, 3, 4, 5 and 6 km/h were not significantly different. There was an anomaly at test speed 1km/h. The reason for this is thought to be due to the fact that this speed is below a comfortable walking speed. At this speed the volunteer over planned and thought about each step in an unnatural fashion.

The following report shows one example of spatiotemporal parameters of gait during the testing namely Speed, Cadence, Step Length, Step Width, Stride Length, Single Support (% of gait cycle), Double Support (% of gait cycle), Stance phase (% of gait cycle) and Swing phase (% of gait cycle).

Page 1/3:

Tel: (972)-9-8637477 Fax: (972)-9-8852935 45 Hamelacha, Poleg industrial zone, Netanya, Israel. Zip: 4250574, PO Box: 8306 www.meditouch.co.il info@meditouch.co.il DO-15-01-17

BalanceTutor signal analysis & validation report 210901.doc

Page 34 of 36

Tel: (972)-9-863747745 Hamelacha, Poleg industrial zone, Netanya, Israel.Fax: (972)-9-8852935Zip: 4250574, PO Box: 8306BalanceTutor signal analysis & validation report 210901.docPage 35 of 36

Page 3/3:

